Rooftop Rainwater Harvesting for Borewell Recharge — A Vadodara Based Project

This project evaluates the potential groundwater recharge through rooftop rainwater harvesting (RWH) by installing five filtration units on five separate 1,000 sq ft rooftop areas, each connected to an existing borewell. The initiative focuses on retrofitting and restarting under-utilized borewells in Vadodara to function as recharge structures, thereby enabling stormwater and rooftop runoff to percolate directly into the aquifer rather than becoming surface runoff or causing localized waterlogging.

Each rooftop is equipped with a **first-flush system** and a sand-gravel filter, ensuring that the collected rainwater is adequately cleaned before entering the borewell. By strategically placing these **five** independent filtrations-bore systems, the project demonstrates how multiple decentralized recharge points can collectively contribute to substantial groundwater replenishment over time.

Using 2025 rainfall data for Vadodara released by

IMD and standard hydraulic assumptions (runoff coefficient and filtration losses), we calculated the potential recharge volumes per bore and then extrapolated for all five systems over a five-year period.

Key Assumptions

Parameter	Value / Assumption		
Roof area per bore	1,000 sq ft (\approx 92.9 m ²) - The average value of 5 bores is taken		
Annual rainfall (Vadodara, 2025)	836.9 mm (0.8369 m)		
Runoff coefficient (RCC terrace)	0.8		
First-flush + filtration loss	20–30 %		

Sample Calculation (per 1,000 sq ft rooftop, per year)

1. Gross rooftop runoff

Rainfall depth \times Roof area = $0.8369 \times 92.9 = 77.65 \text{ m}^3 \approx 77,650 \text{ L}$

2. Apply runoff coefficient (0.8)

 $77,650 \times 0.8 = 62,120 L$

3. Deduct first-flush and filtration losses (20–30 %)

- $20 \% loss \rightarrow 62,120 \times 0.8 = 49,700 L$
- $30 \% loss \rightarrow 62,120 \times 0.7 = 43,500 L$

Net harvestable volume per year per bore \approx 43,500 - 49,700 L

Over 5 years $\approx 218,000 - 249,000 L$

Projected Recharge Volumes

Rooftop-Bore Setup	Per Year (liters)	Over 5 Years (liters)
1 bore (1,000 sq ft)	44,000 – 50,000	218,000 – 249,000
5 bores (5 × 1,000 sq ft)	220,000 – 250,000	1,090,000 - 1,245,000

Significance for Urban Recharge

Implementing rooftop—borewell recharge systems on multiple rooftops shows clear cumulative benefits. Even in a moderate rainfall year like 2025, the installation of five rooftop RWH filter systems, each on 1,000 sq ft areas, can enable the recharge of over 1.1 million liters of water in just five years.

This decentralized strategy can be scaled up for **housing societies**, **institutional campuses**, **and industrial estates** to improve aquifer recharge, reduce urban runoff, and restore borewell functionality — all while using existing infrastructure with minimal new construction.